1 research outputs found

    Efficient fault-tolerant quantum computing

    Full text link
    Fault tolerant quantum computing methods which work with efficient quantum error correcting codes are discussed. Several new techniques are introduced to restrict accumulation of errors before or during the recovery. Classes of eligible quantum codes are obtained, and good candidates exhibited. This permits a new analysis of the permissible error rates and minimum overheads for robust quantum computing. It is found that, under the standard noise model of ubiquitous stochastic, uncorrelated errors, a quantum computer need be only an order of magnitude larger than the logical machine contained within it in order to be reliable. For example, a scale-up by a factor of 22, with gate error rate of order 10−510^{-5}, is sufficient to permit large quantum algorithms such as factorization of thousand-digit numbers.Comment: 21 pages plus 5 figures. Replaced with figures in new format to avoid problem
    corecore